Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nat Commun ; 12(1): 491, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479218

ABSTRACT

Mass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here, we use classical and modern genetic approaches to identify and functionally characterize causal wp- mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of wp- mutations suggest this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.


Subject(s)
Insect Proteins/genetics , Mutation , Pest Control, Biological/methods , Pupa/genetics , Tephritidae/genetics , Amino Acid Sequence , Animals , Base Sequence , CRISPR-Cas Systems , Ceratitis capitata/genetics , Female , Fertility/genetics , Genome, Insect/genetics , Male , Phenotype , Reproduction/genetics , Tephritidae/classification
2.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32241862

ABSTRACT

Streptomyces kaniharaensis is a Gram-positive bacterium that produces formycin A 5'-phosphate, a C nucleotide with antimicrobial and anticancer activity. Here, we report the sequencing, assembly, and annotation of the draft genome sequence of Streptomyces kaniharaensis Shomura and Niida.

3.
Microb Genom ; 6(1)2020 01.
Article in English | MEDLINE | ID: mdl-31922467

ABSTRACT

The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple 'omic' strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host-microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.


Subject(s)
Enterobacteriaceae/genetics , Genes, Bacterial , Pseudogenes , Animals , Bacterial Proteins/genetics , Proteome , Sequence Analysis, DNA , Sequence Analysis, RNA , Symbiosis , Transcriptome , Tsetse Flies/microbiology
4.
mBio ; 10(6)2019 12 03.
Article in English | MEDLINE | ID: mdl-31796539

ABSTRACT

Cryptococcal meningitis is a lethal disease with few therapeutic options. Induction therapy with fluconazole has been consistently demonstrated to be associated with suboptimal microbiological and clinical outcomes. Exposure to fluconazole causes dynamic changes in antifungal susceptibility, which are associated with the development of aneuploidy. The implications of this phenomenon for pharmacodynamics of fluconazole for cryptococcal meningitis are poorly understood. The pharmacodynamics of fluconazole were studied using a hollow-fiber infection model (HFIM) and a well-characterized murine model of cryptococcal meningoencephalitis. The relationship between drug exposure and both antifungal killing and the emergence of resistance was quantified. The same relationships were further evaluated in a recently described group of patients with cryptococcal meningitis undergoing induction therapy with fluconazole at 800 to 1,200 mg/day. The pattern of emergence of fluconazole resistance followed an "inverted U." Resistance amplification was maximal and suppressed at ratios of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC:MIC) of 34.5 to 138 and 305.6, respectively. Emergence of resistance was observed in vivo with an fAUC:MIC of 231.4. Aneuploidy with duplication of chromosome 1 was demonstrated to be the underlying mechanism in both experimental models. The pharmacokinetic (PK)-pharmacodynamic model accurately described the PK, antifungal killing, and emergence of resistance. Monte Carlo simulations from the clinical pharmacokinetic-pharmacodynamic model showed that only 12.8% of simulated patients receiving fluconazole at 1,200 mg/day achieved sterilization of the cerebrospinal fluid (CSF) after 2 weeks and that 83.4% had a persistent subpopulation that was resistant to fluconazole. Fluconazole is primarily ineffective due to the emergence of resistance. Treatment with 1,200 mg/day leads to the killing of a susceptible subpopulation but is compromised by the emergence of resistance.IMPORTANCE Cryptococcal meningitis is a lethal disease with few treatment options. The incidence remains high and intricately linked with the HIV/AIDS epidemic. In many parts of the world, fluconazole is the only agent that is available for the initial treatment of cryptococcal meningitis despite considerable evidence that it is associated with suboptimal microbiological and clinical outcomes. Fluconazole has a fungistatic mode of action: it predominantly inhibits growth rather than causing fungal killing. Our work shows that the pattern of fluconazole activity is caused by the emergence of resistance in Cryptococcus not detected by standard susceptibility tests, with chromosomal duplication/aneuploidy as the main mechanism. Resistance emergence is related to drug exposure and occurs with the use of clinically relevant regimens. Hence, fluconazole (and potentially other agents that target 14-alpha-demethylase) is compromised by an intrinsic property that limits its effectiveness. However, this resistance may be potentially overcome by dosage escalation or the use of combination therapy.


Subject(s)
Antifungal Agents/therapeutic use , Drug Resistance, Fungal/drug effects , Fluconazole/therapeutic use , Meningitis, Cryptococcal/drug therapy , Adult , Animals , Cryptococcus neoformans/drug effects , Female , Humans , Male , Meningoencephalitis/drug therapy , Meningoencephalitis/microbiology , Mice , Microbial Sensitivity Tests/methods , Middle Aged , Young Adult
5.
Article in English | MEDLINE | ID: mdl-30533782

ABSTRACT

The poultry red mite, Dermanyssus gallinae, is a major worldwide concern in the egg-laying industry. Here, we report the first draft genome assembly and gene prediction of Dermanyssus gallinae, based on combined PacBio and MinION long-read de novo sequencing. The ∼959-Mb genome is predicted to encode 14,608 protein-coding genes.

6.
Genome Announc ; 6(16)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29674543

ABSTRACT

Sheep scab, caused by infestation with Psoroptes ovis, is highly contagious, results in intense pruritus, and represents a major welfare and economic concern. Here, we report the first draft genome assembly and gene prediction of P. ovis based on PacBio de novo sequencing. The ∼63.2-Mb genome encodes 12,041 protein-coding genes.

7.
Nat Ecol Evol ; 2(4): 680-687, 2018 04.
Article in English | MEDLINE | ID: mdl-29507380

ABSTRACT

Intraspecific diversity promotes evolutionary change, and when partitioned among geographic regions or habitats can form the basis for speciation. Marine species live in an environment that can provide as much scope for diversification in the vertical as in the horizontal dimension. Understanding the relevant mechanisms will contribute significantly to our understanding of eco-evolutionary processes and effective biodiversity conservation. Here, we provide an annotated genome assembly for the deep-sea fish Coryphaenoides rupestris and re-sequencing data to show that differentiation at non-synonymous sites in functional loci distinguishes individuals living at different depths, independent of horizontal spatial distance. Our data indicate disruptive selection at these loci; however, we find no clear evidence for differentiation at neutral loci that may indicate assortative mating. We propose that individuals with distinct genotypes at relevant loci segregate by depth as they mature (supported by survey data), which may be associated with ecotype differentiation linked to distinct phenotypic requirements at different depths.


Subject(s)
Biological Evolution , Ecosystem , Gadiformes/genetics , Genome/physiology , Animals , Genomics , Genotype
8.
Biotechniques ; 63(1): 13-20, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28701143

ABSTRACT

Current DNA assembly methods are prone to sequence errors, requiring rigorous quality control (QC) to identify incorrect assemblies or synthesized constructs. Such errors can lead to misinterpretation of phenotypes. Because of this intrinsic problem, routine QC analysis is generally performed on three or more clones using a combination of restriction endonuclease assays, colony PCR, and Sanger sequencing. However, as new automation methods emerge that enable high-throughput assembly, QC using these techniques has become a major bottleneck. Here, we describe a quick and affordable methodology for the QC of synthetic constructs. Our method involves a one-pot digestion-ligation DNA assembly reaction, based on the Golden Gate assembly methodology, that is coupled with Pacific Biosciences' Single Molecule, Real-Time (PacBio SMRT) sequencing technology.


Subject(s)
Databases, Genetic , Sequence Analysis, DNA/methods , Base Sequence , Quality Control
9.
J Virol ; 90(10): 4876-4888, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26656699

ABSTRACT

UNLABELLED: Human respiratory syncytial virus (HRSV) is a major cause of serious respiratory tract infection. Treatment options include administration of ribavirin, a purine analog, although the mechanism of its anti-HRSV activity is unknown. We used transcriptome sequencing (RNA-seq) to investigate the genome mutation frequency and viral mRNA accumulation in HRSV-infected cells that were left untreated or treated with ribavirin. In the absence of ribavirin, HRSV-specific transcripts accounted for up to one-third of total RNA reads from the infected-cell RNA population. Ribavirin treatment resulted in a >90% reduction in abundance of viral mRNA reads, while at the same time no such reduction was detected for the abundance of cellular transcripts. The presented data reveal that ribavirin significantly increases the frequency of HRSV-specific RNA mutations, suggesting a direct influence on the fidelity of the HRSV polymerase. The presented data show that transitions and transversions occur during HRSV replication and that these changes occur in hot spots along the HRSV genome. Examination of nucleotide substitution rates in the viral genome indicated an increase in the frequency of transition but not transversion mutations in the presence of ribavirin. In addition, our data indicate that in the continuous cell types used and at the time points analyzed, the abundances of some HRSV mRNAs do not reflect the order in which the mRNAs are transcribed. IMPORTANCE: Human respiratory syncytial virus (HRSV) is a major pediatric pathogen. Ribavirin can be used in children who are extremely ill to reduce the amount of virus and to lower the burden of disease. Ribavirin is used as an experimental therapy with other viruses. The mechanism of action of ribavirin against HRSV is not well understood, although it is thought to increase the mutation rate of the viral polymerase during replication. To investigate this hypothesis, we used a high-resolution approach that allowed us to determine the genetic sequence of the virus to a great depth of coverage. We found that ribavirin did not cause a detectable change in the relative amounts of viral mRNA transcripts. However, we found that ribavirin treatment did indeed cause an increase in the number of mutations, which was associated with a decrease in virus production.


Subject(s)
Antiviral Agents/pharmacology , Mutation , RNA, Viral/genetics , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/physiology , Ribavirin/pharmacology , Transcriptome , Genome, Viral/drug effects , High-Throughput Nucleotide Sequencing/methods , Humans , Interferon-beta/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/enzymology , Respiratory Syncytial Virus, Human/genetics , Transcriptome/drug effects , Transcriptome/genetics , Viral Plaque Assay , Virus Attachment/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
10.
BMC Genomics ; 16: 931, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26573092

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and improve genomic tools for studying the major malaria vector Anopheles funestus. RESULTS: To guide future RNAseq transcriptomic studies of An. funestus, we compared two methods for enrichment of non-ribosomal RNA for analysis: enrichment of polyadenylated RNA and ribosomal RNA depletion using a kit designed to deplete human/rat/mouse rRNA. We found large differences between the two methods in the resulting transcriptomes, some of which is due to differential representation of polyadenylated and non-polyadenylated transcripts. We used the RNAseq data for validation and targeted manual editing of the draft An. funestus genome annotation, validating 62 % of annotated introns, manually improving the annotation of seven gene families involved in the detoxification of xenobiotics and integrated two published transcriptomic datasets with the recently published genome assembly. CONCLUSIONS: The mRNA enrichment method makes a substantial, replicable difference to the transcriptome composition, at least partly due to the representation of non-polyadenylated transcripts in the final transcriptome. Therefore, great care should be taken in comparing gene expression data among studies. Ribosomal RNA depletion of total RNA using a kit designed to deplete human/rat/mouse rRNA works in mosquitoes and, we argue, results in a truer representation of the transcriptome than poly(A) selection. The An. funestus genome annotation can be considerably improved with the help of these new RNAseq data and further guided manual gene editing efforts will be of great benefit to the Anopheles research community for studies of this insect's genome and transcriptome.


Subject(s)
Anopheles/genetics , Genetic Techniques , Genome, Insect , Insect Vectors/genetics , RNA, Messenger/genetics , Animals , Malaria , Polyadenylation , Ribosomes/genetics , Sequence Analysis, RNA
11.
Mol Ecol ; 23(21): 5179-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25244680

ABSTRACT

The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift.


Subject(s)
Ecotype , Genetic Drift , Selection, Genetic , Sympatry , Whale, Killer/genetics , Animals , Evolution, Molecular , Genetic Loci , Genetics, Population , Molecular Sequence Data , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
12.
Ann Occup Environ Med ; 26: 15, 2014.
Article in English | MEDLINE | ID: mdl-24987523

ABSTRACT

OBJECTIVES: Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. METHODS: A large dataset (approximately 22,000 frames, derived from six subjects) of simultaneous lifting and other motions recorded in a laboratory setting using the Kinect (Microsoft Corporation, Redmond, Washington, United States) and a standard optical motion capture system (Qualysis, Qualysis Motion Capture Systems, Qualysis AB, Sweden) was assembled. Error-correction regression models were developed to improve the accuracy of NIOSH lifting equation parameters estimated from the Kinect skeleton. Kinect-Qualysis errors were modelled using gradient boosted regression trees with a Huber loss function. Models were trained on data from all but one subject and tested on the excluded subject. Finally, models were tested on three lifting trials performed by subjects not involved in the generation of the model-building dataset. RESULTS: Error-correction appears to produce estimates for NIOSH lifting equation parameters that are more accurate than those derived from the Microsoft Kinect algorithm alone. Our error-correction models substantially decreased the variance of parameter errors. In general, the Kinect underestimated parameters, and modelling reduced this bias, particularly for more biased estimates. Use of the raw Kinect skeleton model tended to result in falsely high safe recommended weight limits of loads, whereas error-corrected models gave more conservative, protective estimates. CONCLUSIONS: Our results suggest that it may be possible to produce reasonable estimates of posture and temporal elements of tasks such as task frequency in an automated fashion, although these findings should be confirmed in a larger study. Further work is needed to incorporate force assessments and address workplace feasibility challenges. We anticipate that this approach could ultimately be used to perform large-scale musculoskeletal exposure assessment not only for research but also to provide real-time feedback to workers and employers during work method improvement activities and employee training.

13.
PLoS One ; 9(7): e96439, 2014.
Article in English | MEDLINE | ID: mdl-24983354

ABSTRACT

Squirrelpox virus (SQPV) shows little evidence for morbidity or mortality in North American grey squirrels (Sciurus carolinensis), in which the virus is endemic. However, more recently the virus has emerged to cause epidemics with high mortality in Eurasian red squirrels (S. vulgaris) in Great Britain, which are now threatened. Here we report the genome sequence of SQPV. Comparison with other Poxviridae revealed a core set of poxvirus genes, the phylogeny of which showed SQPV to be in a new Chordopoxvirus subfamily between the Molluscipoxviruses and Parapoxviruses. A number of SQPV genes were related to virulence, including three major histocomaptibility class I homologs, and one CD47 homolog. In addition, a novel potential virulence factor showing homology to mammalian oligoadenylate synthetase (OAS) was identified. This family of proteins normally causes activation of an endoribonuclease (RNaseL) within infected cells. The putative function of this novel SQPV protein was predicted in silico.


Subject(s)
Animal Diseases/genetics , Chordopoxvirinae , Poxviridae Infections/genetics , Sciuridae/virology , Viral Proteins/genetics , Virulence Factors/genetics , Animal Diseases/epidemiology , Animal Diseases/virology , Animals , Chordopoxvirinae/genetics , Chordopoxvirinae/pathogenicity , Poxviridae Infections/epidemiology , Sequence Homology, Amino Acid , United Kingdom/epidemiology
14.
Arch Virol ; 158(11): 2371-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23719670

ABSTRACT

The complete coding sequences were determined for four putative vesiculoviruses isolated from fish. Sequence alignment and phylogenetic analysis based on the predicted amino acid sequences of the five main proteins assigned tench rhabdovirus and grass carp rhabdovirus together with spring viraemia of carp and pike fry rhabdovirus to a lineage that was distinct from the mammalian vesiculoviruses. Perch rhabdovirus, eel virus European X, lake trout rhabdovirus 903/87 and sea trout virus were placed in a second lineage that was also distinct from the recognised genera in the family Rhabdoviridae. Establishment of two new rhabdovirus genera, "Perhabdovirus" and "Sprivivirus", is discussed.


Subject(s)
Fish Diseases/virology , Fishes/virology , Genome, Viral , Rhabdoviridae Infections/veterinary , Vesiculovirus/classification , Vesiculovirus/genetics , Animals , Carps/virology , Cyprinidae/virology , Eels/virology , Fishes/classification , Perches/virology , Phylogeny , RNA, Viral/genetics , Rhabdoviridae Infections/virology , Sequence Analysis, DNA , Vesiculovirus/isolation & purification
16.
Genome Res ; 22(12): 2467-77, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22919073

ABSTRACT

The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response.


Subject(s)
Gene Expression Regulation, Bacterial , Genome, Bacterial , Onchocerca volvulus/microbiology , Symbiosis/genetics , Wolbachia/genetics , Animals , Anti-Bacterial Agents/metabolism , Chromatography, Liquid , DNA Replication , DNA, Helminth/genetics , Female , Male , Proteomics/methods , Riboflavin/metabolism , Sequence Analysis, RNA , Tandem Mass Spectrometry , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Transcriptome , Up-Regulation , Wolbachia/immunology
17.
J Bacteriol ; 194(4): 905-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22275103

ABSTRACT

We present the genome sequence of "Candidatus Mycoplasma haemominutum" strain Birmingham 1, a low-pathogenicity feline hemoplasma strain.


Subject(s)
Genome, Bacterial , Mycoplasma/genetics , Base Sequence , Molecular Sequence Data , Mycoplasma/pathogenicity , Sequence Analysis, DNA
19.
Vet Res ; 42: 83, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21749699

ABSTRACT

Mycoplasma haemofelis is a pathogenic feline hemoplasma. Despite its importance, little is known about its metabolic pathways or mechanism of pathogenicity due to it being uncultivatable. The recently sequenced M. haemofelis str. Langford 1 genome was analysed and compared to those of other available hemoplasma genomes.Analysis showed that in hemoplasmas genes involved in carbohydrate metabolism are limited to enzymes of the glycolytic pathway, with glucose appearing to be the sole energy source. The majority of the pentose phosphate pathway enzymes that catalyze the de novo synthesis of ribonucleotides were absent, as were cell division protein FtsZ and chaperonins GroEL/ES. Uncharacterized protein paralogs containing putative surface expression motifs, comprised 62% of M. haemofelis and 19% of Mycoplasma suis genome coverage respectively, the majority of which were present in a small number of unstructured islands. Limited mass spectrometry and immunoblot data matched a number of characterized proteins and uncharacterized paralogs, confirming their expression and immunogenicity in vivo.These data have allowed further characterization of these important pathogens, including their limited metabolic capabilities, which may contribute to their uncultivatable status. A number of immunogenic proteins, and a potential mechanism for host immune system evasion, have been identified.


Subject(s)
Bacterial Proteins/genetics , Cat Diseases/microbiology , Genome, Bacterial , Mycoplasma Infections/veterinary , Mycoplasma/genetics , Animals , Bacterial Proteins/metabolism , Cats , Molecular Sequence Data , Mycoplasma Infections/microbiology , Sequence Analysis, DNA/veterinary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Tandem Mass Spectrometry/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...